
Beramonium
Audit Report

January 8, 2025

Conducted by:
Bogo Cvetkov (b0g0), Independent Security Researcher

1

Table of Contents

1. About b0g0.. 3
2. About Beramonium... 3
3. Risk Classification.. 3

3.1. Impact...3
3.2. Likelihood..3
3.3. Handling severity levels..4

4. Executive Summary...4
5. Disclaimer... 4
6. Findings... 7

6.1. High Severity... 7
6.1.1. Pending reward calculation is broken due to updating of the wrong timestamp.... 7

6.2. Governance... 10
6.2.1. Governance Privileges... 10

6.3. Informational... 11
6.3.1. Insufficient validation.. 11
6.3.2. Gas optimizations...12
6.3.3. Emit events on important state changes.. 12
6.3.4. Typography...13

2

1. About b0g0
Bogo Cvetkov (b0g0) is a smart contract security researcher with a proven track
record of consistently uncovering vulnerabilities in a wide spectrum of DeFi
protocols. Constantly pushing the limits of his expertise, he strives to be a superior
security partner to any protocol & client he dedicates himself to!

2. About Beramonium
Beramonium is the first & biggest idle RPG on Berachain

3. Risk Classification

3.1. Impact
● High - leads to a significant loss of assets in the protocol or significantly

harms a group of users
● Medium - leads to a moderate loss of assets in the protocol or some

disruption of the protocol’s functionality
● Low - funds are not at risk

3.2. Likelihood
● High - almost certain to happen, easy to perform, or highly incentivized
● Medium - only conditionally possible, but still relatively likely

3

● Low - requires specific state or little-to-no incentive

3.3. Handling severity levels
● Critical - Must fix as soon as possible (if already deployed)
● High - Must fix (before deployment if not already deployed)
● Medium - Should fix
● Low - Could fix
● Governance - Could fix

4. Executive Summary
For the duration of 4 days b0g0 has invested his expertise as a security researcher
to analyze the smart contracts of Beramonium protocol and assess the state of its
security. For that time a total of 6 issues have been detected, out of which 1 have
been assigned a severity level of High and 0 a severity level of Medium.

5. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This effort is limited by time, resources, and expertise. My evaluation
of the codebase aims to uncover as many vulnerabilities as possible, given the above
limitations! Subsequent security reviews, bug bounty programs and on-chain
monitoring are strongly recommended!
B0g0 assumes no responsibility for any misbehavior, bugs or exploits affecting the
audited code or any part of the deployment phase.

4

Overview

Scope

5

Project Beramonium

URL https://gemhunters.beramonium.io

Platform Berachain

Language Solidity

Repo https://github.com/Xanewok/bcg-vesting-audit

Commit
Hash

025b736277c18adbfbccf490a272d2a0be367e93

Mitigation 51afa0d382d6e4206919bd66f9eed266cd9d81e5

Dates 3 January - 7 January 2025

Contract Address

BcgVesting.sol -

https://gemhunters.beramonium.io/welcome
https://github.com/Xanewok/bcg-vesting-audit

Issue Statistic

6

Severity Count

High 1

Medium 0

Low/Informational 5

Total 6

6. Findings

6.1. High Severity

6.1.1. Pending reward calculation is broken due to updating of the wrong
timestamp

Context: BcgVesting.sol
Description :
The BCG vesting contract is used to stake BCG tokens and earn rewards in the form of
beramoTokens. For each day a BSG token is staked it gets unlocked part of the rewards it
is entitled to. The total number of days a BSG token can earn rewards is 364 and the
amount of rewards that are unlocked each day are determined by the multiplier of the
token, where some tokens that are unique earn x10 more rewards than the standard ones.

Staking begins once the onTokenStaked() function is called. This sets the
startTimestamp and lastCollectionTimestamp fields in the vesting record for the token:
vestingState[tokenId].vesting = VestingPeriod({

owner: staker,

startTimestamp: _now,

// Invariant: lastCollectionTimestamp >= startTimestamp

lastCollectionTimestamp: _now

});

Both fields are important since they are used to track the days passed since staking started.
And based on the days passed, the rewards to collect are calculated. Additionally there is
the daysCollected variable that tracks how many reward days have been accumulated for
each token, so that once the max is reached, the token will not claim any more rewards than
it should.

7

Unlocked rewards are collected through the collectPendingRewards() function:
function collectPendingRewards(uint16 tokenId) public validateBcgTokenId(tokenId) {

…
(uint256 fullDays, uint256 linearRewards) = _pendingLinearRewards(tokenId);

if (linearRewards > 0) {

vestingState[tokenId].daysCollected += uint16(fullDays);

vestingState[tokenId].vesting.lastCollectionTimestamp = uint48(

data.vesting.startTimestamp + (fullDays * 1 days) // ←—-- @audit

);

// Safety: The token address is immutable and picked by the creator,

// so no risk of reentrancy.

_beramoToken.safeTransfer(data.vesting.owner, linearRewards);

}

}

The function calls internally _pendingLinearRewards(), which is responsible for
calculating how many days have passed since the last reward claim:
function _pendingLinearRewards(

uint16 tokenId

) internal view returns (uint256 fullDays, uint256 rewards) {

…

fullDays = _fullDaysElapsed(data.vesting.lastCollectionTimestamp, _now);

if (fullDays > 0) {

// Ensure we never go beyond the vesting period (364 days)

fullDays = (data.daysCollected + fullDays) > VESTING_PERIOD_IN_DAYS

? VESTING_PERIOD_IN_DAYS - data.daysCollected

: fullDays;

rewards = fullDays * BASE_BERA_DAILY_UNLOCK * _allocationMultiplier(tokenId);

return (fullDays, rewards);

}

8

…

}

The whole issue lies in how the lastCollectionTimestamp gets updated inside
collectPendingRewards():
vestingState[tokenId].vesting.lastCollectionTimestamp = uint48(

data.vesting.startTimestamp + (fullDays * 1 days) // @audit !!! - this should

be lastCollectionTimestamp, not startTimestamp

);

It always uses startTimestamp as a base to which to add the fullDays that have passed
since the last claim, which makes the calculated days invalid and causes the staker to
receive less rewards that they should. Here is an example:

- For the sake of simplicity let’s assume startTimestamp is 0 and each day passed
increments it by 1

- Alice stakes Token1 which sets the state like this - startTimestamp = 0 /
lastCollectionTimestamp = 0 / daysCollected = 0

- 10 (now(10) - lastCollectionTimestamp(0)) days pass and Alice calls
collectPendingRewards(), which updates the state to startTimestamp = 0 /
lastCollectionTimestamp = 0+10 =10 / daysCollected = 0+10 = 10

- 10 (now(20) - lastCollectionTimestamp(10)) more days pass and Alice calls
collectPendingRewards(), which updates the state to startTimestamp = 0 /
lastCollectionTimestamp = 0+10 = 10 / daysCollected = 10+10 = 20. As you
can see lastCollectionTimestamp was updated again to 10, instead of 20

- 10 more days pass, but the protocol calculates 20 (now(30) -
lastCollectionTimestamp(10)), Alice calls collectPendingRewards(), which
updates the state to startTimestamp = 0 / lastCollectionTimestamp = 0+20 =
20 / daysCollected = 20+20 = 40. As you can see daysCollected has been
increased by 20, which strips the staker from 10 days of staking rewards

9

Recommendation
Refactor the accumulation logic like this:
vestingState[tokenId].vesting.lastCollectionTimestamp = uint48(

data.vesting.lastCollectionTimestamp + (fullDays * 1 days)

);

Days should be accumulated on top of lastCollectionTimestamp not startTimestamp
Resolution:
Fixed

6.2. Governance

6.2.1. Governance Privileges
Context: BcgVesting.sol
Description:
The contract DEFAULT_ADMIN_ROLE account has control over several variables that can
impact the outcome of a transaction:

- set the staker role and revoke roles
- Initialize the vesting pool

Recommendation:
Consider incorporating a Gnosis multi-signature contract as the DEFAULT_ADMIN_ROLE
and ensuring that the Gnosis participants are trusted entities
Resolution:
Acknowledged

10

6.3. Informational

6.3.1. Insufficient validation

Context: BcgVesting.sol
Description:
All issues related to validation are collected here to keep the report focused and easy to
read:

- Inside the constructor() check that beramoToken & stakeController are not
address(0), especially beramoToken which is immutable.

- Inside pendingRewards() consider attaching the validateBcgTokenId() modifier
or in case you don’t want the function to revert you can check at the top if tokeId <
BCG_TOKEN_COUNT and just return 0 to skip unnecessary storage reads

- Inside onTokenStaked() check that vestingPoolInitialized is enabled before
allowing any stakes. Also validate that the provided staker parameter is not
address(0) since this might DOS withdraws or cause them to be sent into the void

- Inside onTokenUnstaked() check that the tokens have not been unstaked already.
There is no use to allowing the function to be called multiple times. Execute a check
on owner, startTimestamp & lastCollectionTimestamp and if they are 0 already,
revert.

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Fixed

6.3.2. Gas optimizations

11

Context: BcgVesting.sol
Description:
All issues related to gas are collected here to keep the report focused and easy to read:

- Inside collectPendingRewards() you can check at the top if startTimestamp ==
0 and return early. The check is also done later in the _pendingLinearRewards()
call, but doing it early saves on some storage reads and operations.

- Inside collectPendingRewardsBatch() you can skip the token validity check, since
collectPendingRewards() already has the validateBcgTokenId modifier. This will
prevent double checks on each element

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Fixed

6.3.3. Emit events on important state changes

Context: BsgVesting.sol
Description:
The following state changing functions do not emit events:

- initializeVestingPool()
- onTokenStaked()
- onTokenUnstaked()
- collectPendingRewards()

It is considered a best practice to emit events that mark changes in the state of the smart
contract. It provides transparency to anyone observing how the contract state has changed
and also allows querying by offchain listeners when that is necessary.
Recommendation:

12

Consider emitting relevant events in the above functions
Resolution:
Fixed

6.3.4. Typography

Context: BcgVesting.sol
Description:
All issues related to typography are collected here to keep the report focused and easy to
read:

- The INITIAL_UNLOCK_TOTAL could also be simplified to INITIAL_UNLOCK_TOTAL
=LINEAR_UNLOCK_TOTAL, since the formula does exactly that

- Convention is that interface names should start with I - consider renaming
BcgTokenStakeListener to IBcgTokenStakeListener

- Inside collectPendingRewards() add some informative message to the require()
statement that checks if the caller is the owner or the staker role, currently there is
none.

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Partially fixed

13

