

Beramonium
Audit Report

February 7, 2025

Conducted by:
Bogo Cvetkov (b0g0), Independent Security Researcher

1

Table of Contents

1. About b0g0...3

2. About Beramonium..3

3. Risk Classification...3

3.1. Impact.. 3

3.2. Likelihood... 3

3.3. Handling severity levels... 4

4. Executive Summary... 4

5. Disclaimer..4

6. Findings..7
6.1. High Severity.. 7

6.1.1. A malicious staker can unstake a token without removing it from the staked tokens list 7
6.2. Governance...10

6.2.1. Governance Privileges.. 10
6.3. Informational...10

6.3.1. Insufficient validation... 10
6.3.2. Gas optimizations.. 11
6.3.3. Emit events on important state changes... 12
6.3.4. Typography..12

2

1. About b0g0
Bogo Cvetkov (b0g0) is a smart contract security researcher with a proven track
record of consistently uncovering vulnerabilities in a wide spectrum of DeFi
protocols. Constantly pushing the limits of his expertise, he strives to be a superior
security partner to any protocol & client he dedicates himself to!

2. About Beramonium
Beramonium is the first & biggest idle RPG on Berachain

3. Risk Classification

3.1. Impact
● High - leads to a significant loss of assets in the protocol or significantly

harms a group of users
● Medium - leads to a moderate loss of assets in the protocol or some

disruption of the protocol’s functionality
● Low - funds are not at risk

3.2. Likelihood
● High - almost certain to happen, easy to perform, or highly incentivized
● Medium - only conditionally possible, but still relatively likely

3

● Low - requires specific state or little-to-no incentive

3.3. Handling severity levels
● Critical - Must fix as soon as possible (if already deployed)
● High - Must fix (before deployment if not already deployed)
● Medium - Should fix
● Low - Could fix
● Governance - Could fix

4. Executive Summary
For the duration of 3 days b0g0 has invested his expertise as a security researcher
to analyze the smart contracts of Beramonium protocol and assess the state of its
security. For that time a total of 6 issues have been detected, out of which 1 have
been assigned a severity level of High and 0 a severity level of Medium.

5. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This effort is limited by time, resources, and expertise. My evaluation
of the codebase aims to uncover as many vulnerabilities as possible, given the above
limitations! Subsequent security reviews, bug bounty programs and on-chain
monitoring are strongly recommended!
B0g0 assumes no responsibility for any misbehavior, bugs or exploits affecting the
audited code or any part of the deployment phase.

4

Overview

Scope

5

Project Beramonium

URL https://gemhunters.beramonium.io

Platform Berachain

Language Solidity

Repo https://github.com/Xanewok/bcg-vesting-audit

Commit
Hash

 323acc0b515c37b5573f5c2b887a4881ca98a6a0

Mitigation 15bc2279c636f85a92257d26569057bfa0ec9c88

Dates 5 February - 7 February 2025

Contract Address

BeramoniumGemhuntersList
eners.sol

-

https://gemhunters.beramonium.io/welcome
https://github.com/Xanewok/bcg-vesting-audit

Issue Statistic

6

Severity Count

High 1

Medium 0

Low/Informational 5

Total 6

6. Findings

6.1. High Severity

6.1.1. A malicious staker can unstake a token without removing it from
the staked tokens list

Context: BeramoniumGemhuntersListeners.sol
Description :
The BeramoniumGemhuntersListeners contract allows NFT holders from the
beramonium collection to stake them and earn rewards. Upon calling of stake() for each
staker an internal list(array) called _flexStakedList is updated to keep track of the tokens
that have been deposited for each caller:
function stake(uint16[] calldata tokenIds) public {
…

 unchecked {

 uint16 stakeCount = stakedBeraCount(msg.sender);

….

_ flexStakedList.setAt(msg.sender, 0, stakeCount + uint16(tokenIds.length));

…

 for (uint16 i = 0; i < tokenIds.length; i++) {

 tokenId = tokenIds[i];

 _flexStakedList.setAt(msg.sender, i + stakeCount + 1, tokenId);

 _beramonium.safeTransferFrom(msg.sender, address(this), tokenId);

…

 }

 }

}

7

Upon unstaking through unstakeByIndices(), the _flexStakedList gets updated again to
exclude the tokens that are withdrawn by the staker:

function unstakeByIndices(uint16[] calldata indices) public {\

…

 for (i = 0; i < indices.length; i++) {

 uint16 removedId = _flexStakedList.getAt(msg.sender, indices[i] + 1);

 uint16 last = _flexStakedList.getAt(msg.sender, stakeCount);

 _flexStakedList.setAt(msg.sender, indices[i] + 1, last);

 stakeCount--;

 @> _beramonium.safeTransferFrom(address(this), msg.sender, removedId);

 …..

 }

 // Commit the final stake count

 _flexStakedList.setAt(msg.sender, 0, stakeCount);

}

However there is a re-entrancy vulnerability in the flow when tokens get sent out to the
staker before the storage for stake count inside _flexStakedList is finally updated, which
allows a staker to exploit the unstaking flow by withdrawing a tokenId, without removing it
from the array.

Here is a breakdown of the issue

1. Bob stakes 5 NFTs and his _flexStakedList looks like this - [5,id1,id2,id3,id4,id5]
(index 0 stores the number of NFTs stored after it)

2. Bob calls unstakeByIndices() with indices=[0] to unstake NFT with id1

8

3. Inside the loop, the state of the storage variable _flexStakedList right before the
safeTransferFrom() call looks like this [5,id5,id2,id3,id4,id5]

4. safeTransferFrom() calls the onERC721Received callback of the caller, where he
can execute any logic he like

5. Inside Bob contracts onERC721Received callback after receiving id1 it calls
unstakeByIndices() again, with indices=[4] to get id5.

6. Since this is a re-entrant call and not all storage is updated this is what happens:
a. _flexStakedList[0](id count) is not yet updated, which allows bob to provide

the indice for the last id5 which was however copied in storage into the
index of id1 during the initial call - [5,id5,id2,id3,id4,id5]

b. id5 is sent out to Bob contract
c. The re-entrancy call finishes and after that the initial unstake call also

concludes leaving the storage for the _flexStakedList array in the following
state - [4,id5,id2,id3,id4]

d. As you can see Bob unstaked id1 & id5, but he still has id5 in his array
e. Imagine Bob sells or trades the NFT to Alice and she decides to stake it
f. Since Bob still has it in his staking list he can steal Alice NFT

Recommendation:
The main issue here is that unsafe re-entrancy is allowed through safeTransferFrom().

The first thing is to add OpenZepplein nonReentrant modifiers to both stacking and
unstacking functions, which would prevent in-flight calls like the one above.

Also it is always best to follow the so-called CEI pattern, which means that any external
calls must be made only after all storage has been updated. Here the _flexStakedList
length is updated in storage after all the external transfer calls, which violates the
principle.

9

Resolution:
Fixed

6.2. Governance

6.2.1. Governance Privileges
Context: BeramoniumGemhuntersListeners.sol
Description:
The contract DEFAULT_ADMIN_ROLE account has control over several variables that can
impact the outcome of a transaction:

- add/remove listeners
- upgrading the contract

Recommendation:
Consider incorporating a Gnosis multi-signature contract as the DEFAULT_ADMIN_ROLE
and ensuring that the Gnosis participants are trusted entities
Resolution:
Acknowledged

6.3. Informational

6.3.1. Insufficient validation

Context: BeramoniumGemhuntersListeners.sol
Description:

10

All issues related to validation are collected here to keep the report focused and easy to
read:

- Inside initialize() check that _beramonium is not address(0)
- Inside pushListener() check that listener is not address(0)

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Fixed

6.3.2. Gas optimizations

Context: BeramoniumGemhuntersListeners.sol
Description:
All issues related to gas are collected here to keep the report focused and easy to read:

- Consider adding a parameters for defining a start and end index when iterating
through the staked tokens in stakedBeras(), this provides greater flexibility when
the list is big

- Consider if it makes sense to add a public function which allows to query the current
list of listeners which is private variable and cannot be checked, even by the admins

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Partially resolved

11

6.3.3. Emit events on important state changes

Context: BeramoniumGemhuntersListeners.sol
Description:
The following state changing functions do not emit events:

- pushListener()
- popListener()

It is considered a best practice to emit events that mark changes in the state of the smart
contract. It provides transparency to anyone observing how the contract state has changed
and also allows querying by offchain listeners when that is necessary.
Recommendation:
Consider emitting relevant events in the above functions
Resolution:
Fixed

6.3.4. Typography

Context: BeramoniumGemhuntersListeners.sol
Description:
All issues related to typography are collected here to keep the report focused and easy to
read:

- The _beramonium does not need an underscore since it is a public variable
- Consider adding an underscore to the listeners state variable, since it is private

Recommendation:
Consider implementing the above mentioned recommendations
Resolution:
Fixed

12

13

	
	1.About b0g0
	2.About Beramonium
	3.Risk Classification
	
	3.1.Impact
	3.2.Likelihood
	3.3.Handling severity levels

	4.Executive Summary
	5.Disclaimer
	
	
	
	

	6.Findings
	6.1.High Severity
	6.1.1.A malicious staker can unstake a token without removing it from the staked tokens list

	6.2.Governance
	6.2.1.Governance Privileges

	6.3.Informational
	6.3.1.Insufficient validation
	6.3.2.Gas optimizations
	6.3.3.Emit events on important state changes
	6.3.4.Typography

